Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Zheng Zhang, Yi-Li Zhou and Hong-Yin He*

Biological and Chemical Engineering School, Jiaxing College, Jiaxing 314001, People's Republic of China

Correspondence e-mail: hhy123@163.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.013 \AA$
R factor $=0.035$
$w R$ factor $=0.072$
Data-to-parameter ratio $=11.9$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Poly[μ-isophthalato-lead(II)]

In the title compound, $\left[\mathrm{Pb}\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}\right)\right]_{n}$, the $\mathrm{Pb}^{\mathrm{II}}$ atoms adopt very asymmetric six- and seven-coordinate geometries due to their stereochemically active lone pairs. The isophthalate (benzene-1,3-dicarboxylate) dianions bridge the Pb atoms into a three-dimensional framework. Aromatic $\pi-\pi$ stacking and a possible $\mathrm{Pb} \cdots \pi$ interaction are also seen in this structure.

Comment

Coordination polymers containing transition metal cations and isophthalate (benzene-1,3-dicarboxylate; 1,3-bdc) dianions have been extensively studied (e.g. Moulton et al., 2003). Conversely, main-group metal-1,3-bdc complexes are rare. Recently a few lead(II) complexes with 1,3-bdc have been synthsized, including $\left[\mathrm{Pb}\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}\right)\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right]_{n}$ (Wang et al., 2005). Here, we report the title compound, (I), in which the $\mathrm{Pb}^{\mathrm{II}}$ atoms adopt two different, irregular, coordination geometries (Fig. 1 and Table 1). The Pb 1 and Pb 2 species are coordinated by six and seven O atoms, respectively. These asymmetric geometries presumably arise due to the stereochemically active lone pair of electrons on the cation.

(I)

The 1,3-bdc species are normal. Their roughly equal $\mathrm{C}-\mathrm{O}$ bond lengths for each carboxylate group (Table 1) suggest that the negative charge of these groups is delocalized. The C1/O1/ O 2 and $\mathrm{C} 8 / \mathrm{O} 3 / \mathrm{O} 4$ groups make dihedral angles of 10.3 (17) and $14.2(9)^{\circ}$, respectively, with their attached benzene ring (C2-C7). C9/O5/O6 and C16/O7/O8 make dihedral angles of 17.7 (13) and $7.2(8)^{\circ}$, respectively, with the $\mathrm{C} 10-\mathrm{C} 15$ benzene ring.

The 1,3-bdc ligands coordinate to the $\mathrm{Pb}^{\mathrm{II}}$ atoms, the C 1 molecules acting as a μ_{5}-bridge (μ_{2} from one carboxylate group and μ_{3} from the other) and the C 9 molecule functions as a $\mu_{4}\left(\mu_{2}+\mu_{2}\right)$ bridge. This bridging mode results in a

Received 20 June 2006
Accepted 13 August 2006
\qquad

Figure 1
View of (I) expanded to show the Pb -atom coordinations. Displacement ellipsoids are drawn at the 50% probability level (H atoms are represented by arbitrary spheres). Symmetry codes: (i) $\frac{3}{2}-x, y-\frac{1}{2}$, $\frac{1}{2}-z$; (ii) $x-\frac{1}{2}, \frac{1}{2}-y, z-\frac{1}{2}$; (iii) $x-1, y, z$; (iv) $1-x,-y, 1-z$.

Figure 2
The packing of (I), showing 50\% displacement ellipsoids (H atoms have been omitted for clarity).
complex three-dimensional framework (Fig. 2) that appears to possess small squashed channels propagating in [110].

Aromatic $\pi-\pi$ stacking occurs in (I), the separation between the centroids of the $\mathrm{C} 2-\mathrm{C} 7$ and $\mathrm{C} 10-\mathrm{C} 15$ benzene rings being 3.624 (6) \AA. Additionally, an unusual $\mathrm{Pb} 1 \cdots \pi$ interaction (Fig. 3) with a Pb to ring-centroid separation of 3.121 (4) \AA is present.

Experimental

A mixture of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(0.0985 \mathrm{~g}, 0.3 \mathrm{mmol})$, benzene-1,3-dicarboxylic acid $(0.0575 \mathrm{~g}, \quad 0.3 \mathrm{mmol})$, 4 -aminopyridine $(0.0510 \mathrm{~g}$, 0.54 mmol), 1 ml 0.1 M NaOH and 10 ml water was heated at 393 K for 5 d in a 20 ml Teflon-lined stainless steel autoclave. After cooling, colourless needles of (I) were obtained.

Figure 3
Detail of (I), showing the possible $\mathrm{Pb} 1 \cdots \pi$ interaction (50% displacement ellipsoids and H atoms omitted for clarity). The symmetry codes are as in Fig. 1; additionally, (v) $\frac{1}{2}-x, y-\frac{1}{2}, \frac{1}{2}-z . C g$ is the centroid of the C9-C15 benzene ring.

Crystal data

$\left[\mathrm{Pb}\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}\right)\right]$	$Z=8$
$M_{r}=371.30$	$D_{x}=3.085 \mathrm{Mg} \mathrm{m}^{-3}$
Monoclinic, $P 2_{1} / n$	Mo $K \alpha$ radiation $^{-1}$
$a=8.6132(19) \AA$	$\mu=2.08 \mathrm{~mm}^{-1}$
$b=11.032(2) \AA$	$T=293(2) \mathrm{K}$
$c=17.008(4) \AA$	Needle, colourless
$\beta=98.393(3)^{\circ}$	$0.26 \times 0.03 \times 0.03 \mathrm{~mm}$

$V=1598.8(6) \AA^{3}$

Data collection

Bruker SMART CCD diffractometer
ω scans
Absorption correction: multi-scan (SADABS; Bruker, 1997)
$T_{\text {min }}=0.073, T_{\text {max }}=0.570$
(expected range $=0.068-0.531)$

> 11038 measured reflections 2801 independent reflections 2376 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.066$ $\theta_{\max }=25.0^{\circ}$

Refinement

Refinement on F^{2}
H -atom parameters constrained
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+2.3602 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$w R\left(F^{2}\right)=0.072$
$S=1.04$
2801 reflections
235 parameters
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=1.34 \mathrm{e}^{-3}{ }^{-3}$
$\Delta \rho_{\min }=-1.77 \mathrm{e}^{-3}$

Table 1
Selected bond lengths (\AA).

$\mathrm{Pb} 1-\mathrm{O} 6$	$2.365(6)$	$\mathrm{Pb} 2-\mathrm{O} 2$	$2.756(7)$
$\mathrm{Pb} 1-\mathrm{O} 7^{\mathrm{i}}$	$2.393(7)$	$\mathrm{Pb} 2-\mathrm{O} 2^{\text {iv }}$	$2.842(7)$
$\mathrm{Pb} 1-\mathrm{O} 8^{\mathrm{i}}$	$2.565(6)$	$\mathrm{C} 1-\mathrm{O} 1$	$1.261(12)$
$\mathrm{Pb} 1-\mathrm{O} 4^{\text {ii }}$	$2.597(7)$	$\mathrm{C} 1-\mathrm{O} 2$	$1.243(11)$
$\mathrm{Pb} 1-\mathrm{O} 3^{\text {iii }}$	$2.614(6)$	$\mathrm{C} 8-\mathrm{O} 3$	$1.269(11)$
$\mathrm{Pb} 1-\mathrm{O} 5$	$2.656(6)$	$\mathrm{C} 8-\mathrm{O} 4$	$1.275(10)$
$\mathrm{Pb} 2-\mathrm{O} 1$	$2.323(7)$	$\mathrm{C} 9-\mathrm{O} 5$	$1.257(11)$
$\mathrm{Pb} 2-\mathrm{O} 3^{\mathrm{ii}}$	$2.553(6)$	$\mathrm{C} 9-\mathrm{O} 6$	$1.263(10)$
$\mathrm{Pb} 2-\mathrm{O} 5$	$2.604(6)$	$\mathrm{C} 16-\mathrm{O} 7$	$1.263(11)$
$\mathrm{Pb} 2-\mathrm{O} 8^{\text {iv }}$	$2.639(6)$	$\mathrm{C} 16-\mathrm{O} 8$	$1.251(11)$
$\mathrm{Pb} 2-\mathrm{O} 4^{\text {ii }}$	$2.741(7)$		
Symmetry codes: (i) $x-\frac{1}{2},-y+\frac{1}{2}, z-\frac{1}{2} ;$			
$-x+1,-y,-z+1$.			

metal-organic papers

The H atoms were positioned geometrically $(\mathrm{C}-\mathrm{H}=0.93 \AA)$ and refined as riding, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. The distance between the highest peak and the nearest heavy atom Pb 1 is $1.05 \AA$.

Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

References

Bruker (1997). SADABS, SAINT, SMART and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Moulton, B., Abourahma, H., Bradner, M. W., Lu, J. J., McManus, G. J. \& Zaworotko, M. J. (2003). Chem. Commun. pp. 1342-1343.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Wang, H.-D., He, H.-Y., Wang, Y.-J., Zhu, L.-G. \& Ng, S. W. (2005). Acta Cryst. E61, m531-m532.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

